Wave and Particle in Molecular Interference Lithography
نویسندگان
چکیده
منابع مشابه
Interference Lithography
Interference lithography (IL) is the preferred method for fabricating periodic and quasi-periodic patterns that must be spatially coherent over large areas. IL is a conceptually simple process where two coherent beams interfere to produce a standing wave, which can be recorded in a photoresist. The spatial-period of the grating can be as fine as half the wavelength of the interfering light, all...
متن کاملLow-cost interference lithography
The authors report demonstration of a low-cost 1000 USD interference lithography system based on a Lloyd’s mirror interferometer that is capable of 300 nm pitch patterning. The components include only a 405 nm GaN diode-laser module, a machinist’s block, a chrome-coated silicon mirror, substrate, and double-sided carbon scanning electron microscopy SEM tape. The laser and the machinist’s block ...
متن کاملPattern-integrated interference lithography instrumentation.
Multi-beam interference (MBI) provides the ability to form a wide range of sub-micron periodic optical-intensity distributions with applications to a variety of areas, including photonic crystals (PCs), nanoelectronics, biomedical structures, optical trapping, metamaterials, and numerous subwavelength structures. Recently, pattern-integrated interference lithography (PIIL) was presented as a ne...
متن کاملThree-beam interference lithography methodology.
Three-beam interference lithography represents a technology capable of producing two-dimensional periodic structures for applications such as micro- and nanoelectronics, photonic crystal devices, metamaterial devices, biomedical structures, and subwavelength optical elements. In the present work, a systematic methodology for implementing optimized three-beam interference lithography is presente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2009
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.103.263601